文章编号:0258-7025(2004)02-0164-05

ICF 驱动器谐波转换晶体中受激拉曼散射 的数值计算

李恪宇^{1,3},魏晓峰^{1,2},马 驰¹,蔡邦维³,张 彬³,吕志伟²

1 中国工程物理研究院激光聚变研究中心,四川 绵阳 621900;

(2 哈尔滨工业大学光电子技术研究所,黑龙江 哈尔滨 150001 ; 四川大学电子信息学院,四川 成都 610064,

摘要 为了研究强激光谐波转换晶体中横向受激拉曼散射(TSRS)对大型惯性约束聚变(ICF)激光驱动器的危害, 进行了 TSRS 的数值模拟计算。研究表明 JCF 驱动器常规运行时 $_{30}$ 光的时空分布在理想无调制的情况下 TSRS 不会造成晶体的损伤。

关键词 非线性光学 横向受激拉曼散射 ;KDP 和 KD*P 晶体 中图分类号 0437.1 文献标识码 A

Calculation of Stimulated Raman Scattering of High-Power Laser Driver for ICF in Harmonic Conversion

LI Ke-vu^{1,3}, WEI Xiao-feng^{1,2}, MA Chi¹, CAI Bang-wei³, ZHANG Bin³, LÜ Zhi-wei²

¹Research Center of Laser Fusion , CAEP , Mianyang , Sichuan 621900 , China

²Institute of Opto-Electronics , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China ³College of Electronic Information , Sichuan University , Chengdu , Sichuan 610064 , China

Abstract In order to investigate the damage of transverse stimulated Raman scattering (TSRS) to frequency-conversion crystals of high-power laser driver for inertial confinement fusion (ICF), the simulation and calculation of TSRS has been carried out. It is proved that when it works routinely, TSRS doesn't damage the crystals if the ideal 3ω field is not modulated over time and space.

Key words nonlinear optics ; transverse stimulated Raman scattering (TSRS) ; KDP and KD * P crystals

리 1 言

对于大型惯性约束聚变(ICF)激光驱动器来 说 当光束口径 *D* ≈30 ~40 cm 强度 *I* ≈2 ~4 GW/ cm^2 能量密度 $F \approx 2 \sim 15$ J/cm² 脉宽 $\tau \approx 1 \sim 15$ ns 时 光学元件中将产生两种危害性极大的受激散 射——受激布里渊散射(SBS)和受激拉曼散射 (SRS)¹¹。在 KDP 和 KD*P 谐波转换晶体中,垂直 抽运光传播方向的横向受激拉曼散射(TSRS)是最 具破坏性的非线性效应[1]。而三倍频晶体既是整 个光学链上最易损坏的元件,又是影响能量转换效 率和光束质量的重要环节^[2]。产生的 TSRS 将造成 以下危害:1)能量严重损失,使倍频效率大大降低;

2) 最严重的是,当 TSRS 的 Stokes 光能量密度 (F_{stokes})超过三倍频晶体的破坏阈值时,将造成三 倍频晶体的永久性破坏 结果强激光通过谐波转换 晶体后光束质量变差^[3]。如何定量地研究谐波转 换晶体中 TSRS 的危害性,并且有效地降低 TSRS 的 能量密度 从而减小建造大型 ICF 激光驱动器的风 险 是当前必须解决的新问题。本文建立了 TSRS 的数学模型 ,考虑了 Langevin 噪声源 ,Stokes 光的损 耗 ,TSRS 在晶体上下两侧面的反射 ,并进行了 TSRS 的数值模拟计算,计算结果可以为建造大型 ICF 激 光驱动器提供工程设计参数选择的参考。

收稿日期 2002-09-26; 收到修改稿日期 2002-11-11

作者简介:李恪宇(1976—)男.硕士研究生,主要研究方向为强激光技术。E-mail likevu6969@ sina.com 万方数据

物理模型 2

2.1 SRS 理论

图1表示光与物质相互作用过程的拉曼效应, 其中物质吸收频率为ω。的抽运光子。同时发射频率 为ω。的散射光子,并从能级状态|1 跃迁到了能级 状态 2 (1 m 为虚能级态)。因为 SRS 的增益系数 g与抽运光波长成反比($g \propto 1/\lambda$)⁴,并且沿横向方 向 g 值最大^[1],所以波长为 0.351 μm 的 3ω 光抽运 产生的 TSRS 光最强。如图 2 所示,由于 3ω 光在三倍 频器输出表面最强[5],因此,三倍频器输出表面的 3ω 光抽运产生的 TSRS 光对晶体构成的损伤威胁最 大。

2.2 KDP和 KD^*P 谐波转换晶体的 TSRS 物理模 型

根据 TSRS 的物理特性,考虑了如下物理过程: Langevin 噪声源 ,Stokes 光的损耗和晶体上下两侧 面的 Stokes 光反射。从量子力学基本原理出发,推 导出描述谐波转换晶体中TSRS在空间上的三维近

图 2 谐波转换晶体中 TSRS 的光路示意图

Fig. 2 Sketch map of optical layout about TSRS in frequency-conversion crystal

轴算符 Maxwell-Bloch-Langevin 方程组^[5]:

type 1 SHG

$$\left(\frac{\partial}{\partial t} + \Gamma\right)\hat{Q}(\overrightarrow{r} t) = \tilde{E}_{p}^{*}(\overrightarrow{r} t) \cdot \kappa_{1} \cdot \hat{E}_{s}(\overrightarrow{r} t) + \hat{F}(\overrightarrow{r} t)$$
(1)

$$\left(\frac{\partial}{\partial x} + \frac{1}{c}\frac{\partial}{\partial t} - \frac{i}{2k_s}\nabla_T^2\right)\hat{E}_s(\overrightarrow{r} t) = \hat{Q}(\overrightarrow{r} t) \cdot \kappa_2 \cdot E_p(\overrightarrow{r} t)$$
(2)

$$\hat{\mathcal{Q}}^{+}(\overrightarrow{r} t)\hat{\mathcal{Q}}(\overrightarrow{r}' t) = \frac{1}{n}\partial(\overrightarrow{r} - \overrightarrow{r}')$$
(3)

$$\hat{F}'(\vec{r} t)\hat{F}(\vec{r}' t') = \frac{2\Gamma}{n}\delta(\vec{r} - \vec{r}')(t - t')$$
(4)

式中, Г 是衰减系数,为1.88 ps⁻¹, Q(r→ t) 描述 了物质的量子极化状态 E_{i} (\overrightarrow{r}_{t})为抽运场 因其 非常强 故可把它当作经典电场来处理 κ, 和 κ, 是 TSRS的耦合系数,也是介质的极化率张量,

 \tilde{E} (\vec{r} t)为 Stokes 光的量子场 , $\tilde{F}(\vec{r}$ t)为涨落 力 x 为横向传播距离 c 为介质中的光速 k_s 为 Stokes 光的波矢量。

由于研究的目的是谐波转换晶体中的 TSRS 因 此把抽运光当作是给定的 即忽略 3ω 光在 KDP 或 KD*P 谐波转换晶体内部的传输损耗。为了简化计 算 认为介质在横向 x 方向是各向同性的。因此 κ_1 和 κ, 就成了一个标量

$$\kappa_1 = \sqrt{\frac{\Gamma c^2 g}{8\pi^2 n\hbar\omega_s}} \tag{5}$$

$$\kappa_2 = (2\pi n\hbar\omega_s/c)\kappa_1 \qquad (6)$$

其中 g 为稳态增益系数,拉曼频移为913 cm⁻¹, ω_s 是 Stokes 光的圆频率,为 3.4656 × 10¹⁵ Hz, n 是拉曼 激活'原子"数密度 Stokes 光的折射率为 1.5。

同时,也得到了空间上的一维标准方程组:

$$\left(\frac{\partial}{\partial \tau} + \Gamma\right) \hat{Q}(x \pi) = \kappa_1 E_p^*(x \pi) \hat{E}_s(x \pi) + \hat{F}(x \pi)$$
(7)

$$\hat{\partial E}_{s}(x \pi)/\partial x = \kappa_{2} \hat{Q}(x \pi) E_{p}(x \pi) \qquad (8)$$

$$\hat{Q}^{+}(x \ \beta) \hat{Q}(x' \ \beta) = \frac{1}{nA} \delta(x - x')$$
(9)

$$\hat{F}'(x \pi)\hat{F}(x' \pi') = \frac{2\Gamma}{nA} \delta(x - x') (\tau - \tau')$$
(10)

万方数据

因方程组(7)~(10)无解析解,所以只能用计 算机求解,具体步骤如下:

1)将晶体沿纵向分成许多薄片;

 2) 对于每一薄片 将抽运场在横向 x 方向和时 间 τ 上离散化;

3)用计算机产生初始的 Q 分布值和 Langevin 项 F ,它们是复高斯型随机噪声源 ,二者的概率密度 函数为

$$Prob[Q_0(x \ \beta)] = \frac{1}{\pi \sigma_Q^2} \exp\left[-\frac{|Q_0(x \ \beta)|^2}{\sigma_Q^2}\right]$$
$$Prob[F(x \ \pi)] = \frac{1}{\pi \sigma_F^2} \exp\left[-\frac{|F(x \ \pi)|^2}{\sigma_F^2}\right]$$

其中 $\sigma_Q^2 = \frac{1}{nA\delta x} \sigma_F^2 = \frac{2\Gamma}{nA\delta x\delta \tau} A$ 为晶体的侧面面积; 4) 用有限差分法求解方程组。

3 计算结果及分析

3.1 数值模拟计算程序的校核

为了验证计算程序,将相关文献[5]中美国洛 仑兹·里弗莫尔国家实验室(LLNL)的参量(见表 1)代入计算程序 结果如图3(a)与(b)及图4(a)与 (b)所示。图3(a)~(d)中的 I_{Stokes} 是晶体内任何时 间与空间处的最大值 F_{Stokes} 是由 I_{Stokes} 在时间上积 分得到的,并且是晶体内任何空间处的最大值。 I_{Stokes} 与 F_{Stokes} 的单位分别为 GW/cm²与 J/cm²。

表 1 计算中用到的参量 Table 1 Parameters used in calculation

	$D_{\rm beam}$ / cm	$D_{ m crystal}$ / cm	$\tau_{3\omega}/\mathrm{ns}$	$F_{3\omega}$ /J · cm ⁻²	$I_{3\omega}$ / GW · cm ⁻²
Fig. 3(a)and Fig. 4(a) (b)	40	44	4	7.5	1.875
Fig. 3(b)	40	44	4	12	3
Fig. 3(c) (d) ,Fig. 4(c) (d) ,Fig. 5 ,Fig. 6	29	33	1	2.6	2.6

图 3 Stokes 光强度和光能量密度最大值随晶体边缘 反射率的变化曲线

Fig. 3 Stokes peak intensity and fluence vs crystal edge reflectivity for

$$(a) (c) g = 0.25 \text{ cm/ Gw} (KDF),$$

(b) (d)
$$g = 0.115 \text{ cm/GW}$$
 (KD * P)

由图 3(a) (b)可见 ,本文计算结果同文献 5] 的计算结果<u>外形和变</u>化趋势完全相同 ,量级也一致 , 万万数据

- 图 4 反射率为 10% 时 ,KDP 晶体中 Stokes 光能量密度随空间坐标 x 的分布(a) (c)和以晶体侧面为出发点的 Stokes 光横向传输时强度随时间 t 的分布(b), (d)
- Fig. 4 Stokes fluence vs x(a), (c) and Stokes intensity vs t
 (b), (d) in KDP that sends from the crystal edge when reflectivity is 10%

表明本文的模型和计算程序是正确的。但所求得的 *I*_{Stokes}和 *F*_{Stokes}最大值相差 15% ,原因是二者所取计 算参量略有不同,如:超高斯阶数、光斑半径、空间和 时间各自的取样点数和随机噪声源的产生等等。

3.2 ICF 驱动器中 TSRS 的计算研究

根据大型 ICF 驱动器的技术指标,常规运行时 理想的 3ω 光如图 5 所示 相关参数见表 1。它在空 间上为方形分布,在时间上为平顶分布,且平顶部分 都没有调制,脉宽为半高全宽(FWHM)。光束口径 为零强度(0.01 I_0)束宽,光束软化因子为 2.1481 cm,脉冲从上升沿的 0.1 I_0 上升到 0.9 I_0 和从下降沿 的 0.9 I_0 下降到 0.1 I_0 的时间均为 250 ps, I_0 为峰值 光强。初始的 $I_{\text{Stokes}}(x \rho)$ 是由随机的量子噪声 $Q_0(x \rho)$ 产生的,并在横向传输时得到放大。

利用校核后的程序,计算得到常规运行时,谐波 转换晶体中的 *I*_{Stokes} 和 *F*_{Stokes} 最大值曲线(图 3(c), (d))和 TSRS 时空特性曲线(图 4(c)(d)和图 6)。

由图 3(c) (d)可知, KDP 晶体和 KD^{*} P 晶体 内 F_{Stokes} 最大值量级分别为 10⁻⁸ J/cm² 和 10⁻¹¹ J/ cm²。按照文献 5]中 KDP 晶体相对于 3 ω 光的损伤 阈值公式 $F_{\text{thr}} = 6\tau^{1/2}(\tau 是脉宽, 单位为 ns, F_{\text{thr}} 是$ $3<math>\omega$ 光能量密度,单位为 J/cm²),当 τ 为 1 ns 时 KDP 晶体的 F_{thr} 为 6 J/cm²(KD^{*} P 的 F_{thr} 比 KDP 的 F_{thr} 稍小)。由于 λ_{Stokes} 为 0. 3626 μ m,与 $\lambda_{3\omega}$ 相近,因此, KDP 晶体相对于 Stokes 光的损伤阈值 F_{thr} 与晶体相 对于 3 ω 光的损伤阈值 F_{thr} 相近。所以,TSRS 的 F_{Stokes} 最大值远小于损伤阈值 F_{thr} ,不足以造成晶体 的损伤。并且,随着反射率的改变,KDP 和 KD^{*} P 晶体中的 F_{Stokes} 最大值变化很小,这与图 3(a) (b) 中变化很平缓的那段曲线相类似。从图 4(b) (d) 和图 6(b)中可看出,这主要是由于:

1)图4(d)图6(b)中的 τ 为1 ns,比本文研究的 ICF 驱动器的谐波转换晶体口径为33 cm 时的单程传输时间(1.65 ns)要小,以晶体侧面处为出发点的 Stokes 光在传播到晶体侧面之前, $I_{3\omega}$ 已衰减到零,则 Stokes 亦物开始衰减,因此从晶体侧面反射回

图 6 反射率为 10% 时 ,KD*P 晶体中 Stokes 光能量密度 随空间坐标 x 的分布(a)和以晶体中心为出发点的 Stokes 光横向传输时强度随时间 t 的分布(b)

Fig. 6 Stokes fluence vs x (a) and Stokes intensity vs time t
(b) in KD* P that sends from the crystal center when reflectivity is 10%

来的 Stokes 光就得不到增益了。

2)图4(b)中的脉冲持续时间为4 ns,这比文 献 5 冲谐波转换晶体口径为 44 cm 时的单程传输 时间(2.2 ns)要长。当 Stokes 光传输到晶体侧面, 又被反射回晶体中时, Istakes 有个突变。并且, 反射 率越大,反射回晶体中的 Istokes 也越大,结果 Stokes 光在进行第二个单程传输时,其获得的增益也越大, 可见 Isuka 最大值是由两个单程传输得到的。所以, 图 3(a) (b) 中 F_{Stokes} 和 I_{Stokes} 最大值随晶体边缘反 射率的变化比较明显。但是 ,当晶体反射率降低到 某一范围时(比如 图 3(b)中反射率小于 10⁻⁵时), 由于反射回来的 Istokes 很小,与从量子噪声产生的 I_{Stakes} 可比拟 因此第二个单程传输已不再受第一个 单程传输和晶体侧面反射率的影响 /sukes 最大值是 由单程传输得到的,结果 F_{Stokes} 和 I_{Stokes} 最大值随晶 体边缘反射率的变化小 这段曲线的变化规律与图 3(c)(d)类似。

3) 从图 4(d)和图 6(b)中得知,出发点不同的 Stokes 光横向传输时 I_{Stokes} 随时间 t 的分布也不同。 图 4(d)中的 Stokes 光以晶体侧面为出发点,其 I_{Stokes} 最大值是由单程传输得到的,量级为 10⁻⁷ GW/cm², 与图 3(c)中晶体内任何时间与空间处的 I_{Stokes} 最大 值量级 10⁻⁶ GW/cm² 相接近。而图 6(b)中的 Stokes 光以晶体中心为出发点的,其 I_{Stokes} 最大值是 由两个单程传输得到的,量级为 10⁻¹³ GW/cm²,远 远小于图 3(d)中晶体内任意时间与空间处的 I_{Stokes} 最大值量级 10⁻¹⁰ GW/cm²,这也就说明了本文研究 的大型 ICF 激光驱动器在常规运行时,驱动器中 F_{Stokes} 和 I_{Stokes} 最大值都是由单程传输得到,两者随 晶体边缘反射率的变化很小。

4 结 论

常规运行时,文献 5]中的驱动器和本文研究 的大型 ICF 激光驱动器的光束口径、晶体口径、脉宽 和三倍频光强度不一样(见表1),二者谐波转换 KDP 晶体中的 Stokes 光横向传输时 I_{Stokes} 分布分别 如图 4(b) (d) 所示。Stokes 光在晶体中横向传输 1.2 ns 后 图 4(b)的 I_{Stokes} 量级为 10⁻¹⁰ GW/cm² ,比 图 4(d)的 I_{stokes} 量级 10⁻⁷ GW/cm² 要小,这是图 4 (b)的 I₃ 比图 4(d)的 I₃ 要小的缘故。但由于图 4 (b)的脉宽为4 ns Stokes 光横向传输1.2 ns 后还要 继续传输 而图 4(d)的脉宽为 1 ns Stokes 光横向 传输 1.2 ns 后就开始衰减了。结果,图 4(b)的 Stokes 光经过两个单程传输后, I_{Stokes} 量级为 10^3 GW/cm²,远大于图 4(d)的 I_{Stokes} 量级 10⁻⁷ GW/ cm²。所以本文研究的大型 ICF 激光驱动器常规运 行时,光束口径 29 cm,晶体口径 33 cm, F₃₀为 2.6 J/cm^2 , $\tau_{3\omega}$ 为1 ns(FWHM), 3ω 光的时空分布在理 想无调制的情况下,则 KDP和 KD*P 晶体中 TSRS 的 F_{Stokes} 最大值都远远小于晶体的损伤阈值,不足 以造成晶体的损伤。

致谢 作者感谢李大义教授、杨经国教授和张天树 研究员对本工作的帮助和有益的讨论。

参考文献

- 1 V. N. Novikov, S. A. Belkov, S. A. Buiko *et al.*. Transverse SRS in KDP, and KD*P crystal [C]. *SPIE*, 1998, 3492 :1009 ~1018
- Peng Hansheng, Zhang Xiaomin, Fan Dianyuan *et al.*. Status of high-power solid-state laser and engineer science [J]. *Engineering Science*, 2001, 3(3):1~8
 彭翰生,张小民,范滇元等.高功率固体激光装置的发展与工程 科学问题[J].中国工程科学,2001,3(3):1~8
- 3 C. E. Barker , R. A. Sacks , B. M. Van Wonterghem *et al.*. Transverse stimulated Raman scattering in KDP [C]. *SPIE* , 1995 , 2633 501 ~ 505
- 4 S. A. Belkov, G. G. Kochemasov, S. M. Kulikov *et al.*. Stimulated Raman scattering in frequencey conversion crystal [C]. *SPIE*, 1995, 2633 506 ~ 512
- 5 R. A. Sacks , C. E. Barker , R. B. Erlich. Stimulated Raman scattering in large-aperture , high-fluence frequency-conversion crystals [C]. *ICF Quarterly Report* , LLNL , 1992 , 2(4):179

